Advertisement

Use of artificial intelligence in obstetrics: not quite ready for prime time

  • Laura Sarno
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Daniele Neola
    Correspondence
    Corresponding author: Daniele Neola, MD.
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Luigi Carbone
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Gabriele Saccone
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Annunziata Carlea
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Marco Miceli
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)

    CEINGE Biotecnologie Avanzate, Naples, Italy (Dr Miceli)
    Search for articles by this author
  • Giuseppe Gabriele Iorio
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Ilenia Mappa
    Affiliations
    Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Rome Tor Vergata, Rome, Italy (Dr Mappa and Dr Rizzo)
    Search for articles by this author
  • Giuseppe Rizzo
    Affiliations
    Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Rome Tor Vergata, Rome, Italy (Dr Mappa and Dr Rizzo)
    Search for articles by this author
  • Raffaella Di Girolamo
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Francesco D'Antonio
    Affiliations
    Center for Fetal Care and High Risk Pregnancy, Department of Obstetrics and Gynecology, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy (Dr D'Antonio)
    Search for articles by this author
  • Maurizio Guida
    Affiliations
    Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Sarno, Dr Neola, Dr Carbone, Dr Saccone, Dr Carlea, Dr Miceli, Dr Iorio, Dr Girolamo, and Dr Guida)
    Search for articles by this author
  • Giuseppe Maria Maruotti
    Affiliations
    Gynecology and Obstetrics Unit, Department of Public Health, School of Medicine, University of Naples Federico II, Naples, Italy (Dr Maruotti)
    Search for articles by this author
Published:November 07, 2022DOI:https://doi.org/10.1016/j.ajogmf.2022.100792
      Artificial intelligence is finding several applications in healthcare settings. This study aimed to report evidence on the effectiveness of artificial intelligence application in obstetrics.
      Through a narrative review of literature, we described artificial intelligence use in different obstetrical areas as follows: prenatal diagnosis, fetal heart monitoring, prediction and management of pregnancy-related complications (preeclampsia, preterm birth, gestational diabetes mellitus, and placenta accreta spectrum), and labor.
      Artificial intelligence seems to be a promising tool to help clinicians in daily clinical activity. The main advantages that emerged from this review are related to the reduction of inter- and intraoperator variability, time reduction of procedures, and improvement of overall diagnostic performance. However, nowadays, the diffusion of these systems in routine clinical practice raises several issues. Reported evidence is still very limited, and further studies are needed to confirm the clinical applicability of artificial intelligence.
      Moreover, better training of clinicians designed to use these systems should be ensured, and evidence-based guidelines regarding this topic should be produced to enhance the strengths of artificial systems and minimize their limits.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to American Journal of Obstetrics & Gynecology MFM
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McCarthy J
        • Minsky ML
        • Rochester N
        • Shannon CE
        A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955.
        AI Magazine. 2006; 27: 12https://doi.org/10.1609/aimag.v27i4.1904
        • Drukker L
        • Noble JA
        • Papageorghiou AT.
        Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology.
        Ultrasound Obstet Gynecol. 2020; 56: 498-505
        • Dhombres F
        • Bonnard J
        • Bailly K
        • Maurice P
        • Papageorghiou AT
        • Jouannic JM.
        Contributions of artificial intelligence reported in obstetrics and gynecology journals: systematic review.
        J Med Internet Res. 2022; 24: e35465
        • Ewigman BG
        • Crane JP
        • Frigoletto FD
        • LeFevre ML
        • Bain RP
        • McNellis D.
        Effect of prenatal ultrasound screening on perinatal outcome. RADIUS Study Group.
        N Engl J Med. 1993; 329: 821-827
        • Luck CA.
        Value of routine ultrasound scanning at 19 weeks: a four year study of 8849 deliveries.
        BMJ. 1992; 304: 1474-1478
        • Hoopmann M
        • Kagan KO
        • Sauter A
        • Abele H
        • Wagner P.
        Comparison of errors of 35 weight estimation formulae in a standard collective.
        Geburtshilfe Frauenheilkd. 2016; 76: 1172-1179
        • Hadlock FP
        • Deter RL
        • Harrist RB
        • Park SK.
        Fetal biparietal diameter: a critical re-evaluation of the relation to menstrual age by means of real-time ultrasound.
        J Ultrasound Med. 1982; 1: 97-104
        • Carneiro G
        • Georgescu B
        • Good S
        • Comaniciu D.
        Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.
        IEEE Trans Med Imaging. 2008; 27: 1342-1355
        • Rueda S
        • Fathima S
        • Knight CL
        • et al.
        Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.
        IEEE Trans Med Imaging. 2014; 33: 797-813
        • Li J
        • Wang Y
        • Lei B
        • et al.
        Automatic fetal head circumference measurement in ultrasound using random forest and fast ellipse fitting.
        IEEE J Biomed Health Inform. 2018; 22: 215-223
        • Wu L
        • Cheng JZ
        • Li S
        • Lei B
        • Wang T
        • Ni D.
        FUIQA: fetal ultrasound image quality assessment with deep convolutional networks.
        IEEE Trans Cybern. 2017; 47: 1336-1349
      1. Foi A, Maggioni M, Pepe A, Rueda S, Noble JA, Papageorghiou AT, Tohka J. Difference of Gaussians revolved along elliptical paths for ultrasound fetal head segmentation. Comput Med Imaging Graph. 2014;38(8):774–84. https://doi.org/10.1016/j.compmedimag.2014.09.006. Epub 2014 Sep 30. PMID: 25450760.

        • Ciurte A
        • Bresson X
        • Cuisenaire O
        • et al.
        Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.
        PLoS One. 2014; 9e100972
      2. Stebbing RV and McManigle JE, A boundary fragment model for head segmentation in fetal ultrasound, in Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images, ISBI 2012, 2012, pp. 9–11.

        • Sun C.
        “Automatic fetal head measurements from ultrasound images using circular shortest paths,” in Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images.
        ISBI. 2012; 2012: 13-15
      3. Ponomarev GV, Gelfand MS, Kazanov MD, A multilevel thresholding combined with edge detection and shape-based recognition for segmentation of fetal ultrasound images, in Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images, ISBI 2012, 2012, pp. 17–19.

        • van den Heuvel TLA
        • de Bruijn D
        • de Korte CL
        • Ginneken BV.
        Automated measurement of fetal head circumference using 2D ultrasound images.
        PLoS One. 2018; 13e0200412
        • Kim HP
        • Lee SM
        • Kwon JY
        • Park Y
        • Kim KC
        • Seo JK.
        Automatic evaluation of fetal head biometry from ultrasound images using machine learning.
        Physiol Meas. 2019; 40065009
        • Rizzo G
        • Aiello E
        • Pietrolucci ME
        • Arduini D.
        The feasibility of using 5D CNS software in obtaining standard fetal head measurements from volumes acquired by three-dimensional ultrasonography: comparison with two-dimensional ultrasound.
        J Matern Fetal Neonatal Med. 2016; 29: 2217-2222
        • Ambroise Grandjean G
        • Hossu G
        • Bertholdt C
        • Noble P
        • Morel O
        • Grangé G.
        Artificial intelligence assistance for fetal head biometry: assessment of automated measurement software.
        Diagn Interv Imaging. 2018; 99: 709-716
        • Gordijn SJ
        • Beune IM
        • Thilaganathan B
        • et al.
        Consensus definition of fetal growth restriction: a Delphi procedure.
        Ultrasound Obstet Gynecol. 2016; 48: 333-339
      4. Fetal growth restriction: ACOG Practice Bulletin, Number 227.
        Obstet Gynecol. 2021; 137: e16-e28
        • Kim B
        • Kim KC
        • Park Y
        • Kwon JY
        • Jang J
        • Seo JK.
        Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images.
        Physiol Meas. 2018; 39105007
      5. Wang CV. Automatic entropy-based femur segmentation and fast length measurement for fetal ultrasound images, International Conference on Advanced Robotics and Intelligent Systems (ARIS), 2014, pp. 1–5. https://doi.org/10.1109/ARIS.2014.6871490

        • Salomon LJ
        • Alfirevic Z
        • Berghella V
        • et al.
        Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan.
        Ultrasound Obstet Gynecol. 2011; 37: 116-126
        • Baumgartner CF
        • Kamnitsas K
        • Matthew J
        • et al.
        SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound.
        IEEE Trans Med Imaging. 2017; 36: 2204-2215
      6. Yaqub M, Kelly B, Papageorghiou, AT, Noble JA. Guided Random Forests for Identification of Key Fetal Anatomy and Image Categorization in Ultrasound Scans. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_82

      7. Ni D, Li T, Yang X, et al. Selective Search and Sequential Detection for Standard Plane Localization in Ultrasound. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds) Abdominal Imaging. Computation and Clinical Applications. ABD-MICCAI 2013. Lecture Notes in Computer Science, vol 8198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41083-3_23

        • Zhang L
        • Chen S
        • Chin CT
        • Wang T
        • Li S.
        Intelligent scanning: automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination.
        Med Phys. 2012; : 5015-5027
      8. Chen H, Dou Q, Ni D, et al. Automatic Fetal Ultrasound Standard Plane Detection Using Knowledge Transferred Recurrent Neural Networks. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9349. Springer, Cham. https://doi.org/10.1007/978-3-319-24553-9_62

        • Chen H
        • Ni D
        • Qin J
        • et al.
        Standard plane localization in fetal ultrasound via domain transferred deep neural networks.
        IEEE J Biomed Health Inform. 2015; 19: 1627-1636
        • Bridge CP
        • Ioannou C
        • Noble JA.
        Automated annotation and quantitative description of ultrasound videos of the fetal heart.
        Med Image Anal. 2017; 36: 147-161
        • Yu Q
        • Yan H
        • Song L
        • et al.
        Automatic identifying of maternal ECG source when applying ICA in fetal ECG extraction.
        Biocybern Biomed Eng. 2018; 38: 448-455
      9. Muduli PR, Gunukula RR, Mukherjee A. A deep learning approach to fetal-ECG signal reconstruction, 2016 Twenty Second National Conference on Communication (NCC), 2016, pp. 1–6, doi: https://doi.org/10.1109/NCC.2016.7561206.

        • Yeo L
        • Romero R.
        Fetal Intelligent Navigation Echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart.
        Ultrasound Obstet Gynecol. 2013; 42: 268-284
        • Yeo L
        • Romero R.
        Intelligent navigation to improve obstetrical sonography.
        Ultrasound Obstet Gynecol. 2016; 47: 403-409
      10. Arnaout R, Curran L, Chinn E, et al. Deep-learning models improve on community-level diagnosis for common congenital heart disease lesions. 2018. arXiv preprint arXiv:1809.06993.

        • Acherman RJ
        • Evans WN
        • Luna CF
        • et al.
        Prenatal detection of congenital heart disease in southern Nevada: the need for universal fetal cardiac evaluation.
        J Ultrasound Med. 2007; 26: 1715-1719
        • Garne E
        • Stoll C
        • Clementi M
        • Group Euroscan
        Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries.
        Ultrasound Obstet Gynecol. 2001; 17: 386-391
        • Sklansky MS
        • Berman DP
        • Pruetz JD
        • Chang RK.
        Prenatal screening for major congenital heart disease: superiority of outflow tracts over the 4-chamber view.
        J Ultrasound Med. 2009; 28: 889-899
        • Truong VT
        • Nguyen BP
        • Nguyen-Vo TH
        • et al.
        Application of machine learning in screening for congenital heart diseases using fetal echocardiography.
        Int J Cardiovasc Imaging. 2022; 38: 1007-1015
        • Di Mascio D
        • Khalil A
        • Pilu G
        • et al.
        Role of prenatal magnetic resonance imaging in fetuses with isolated severe ventriculomegaly at neurosonography: a multicenter study.
        Eur J Obstet Gynecol Reprod Biol. 2021; 267: 105-110
        • Di Mascio D
        • Buca D
        • Rizzo G
        • et al.
        Methodological quality of fetal brain structure charts for screening examination and targeted neurosonography: a systematic review.
        Fetal Diagn Ther. 2022; 49: 145-158
        • ENSO Working Group
        Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: international multicenter study.
        Ultrasound Obstet Gynecol. 2020; 56: 340-347
        • Huang R
        • Xie W
        • Alison Noble J
        VP-Nets: efficient automatic localization of key brain structures in 3D fetal neurosonography.
        Med Image Anal. 2018; 47: 127-139
      11. Namburete AI, Stebbing RV, Noble JA. Cranial parametrization of the fetal head for 3D ultrasound image analysis. 2013, Medical Image Understanding and Analysis (MIUA), 196–201.

        • Namburete AIL
        • Xie W
        • Yaqub M
        • Zisserman A
        • Noble JA.
        Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning.
        Med Image Anal. 2018; 46: 1-14
        • Yu Z
        • Wu L
        • Ni D
        • et al.
        Fetal facial standard plane recognition via deep convolutional neural networks.
        Chin J Biomed Eng. 2017; 36: 267-275
        • Dall'Asta A
        • Schievano S
        • Bruse JL
        • et al.
        Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: a feasibility study.
        Am J Obstet Gynecol. 2017; 217 (e1–8): 76
        • Re C
        • Bertucci E
        • Weissmann-Brenner A
        • Achiron R
        • Mazza V
        • Gindes L.
        Fetal thymus volume estimation by virtual organ computer-aided analysis in normal pregnancies.
        J Ultrasound Med. 2015; 34: 847-852
        • Evans MI
        • Van Decruyes H
        • Nicolaides KH.
        Nuchal translucency measurements for first-trimester screening: the “price” of inaccuracy.
        Fetal Diagn Ther. 2007; 22: 401-404
        • Moratalla J
        • Pintoffl K
        • Minekawa R
        • Lachmann R
        • Wright D
        • Nicolaides KH.
        Semi-automated system for measurement of nuchal translucency thickness.
        Ultrasound Obstet Gynecol. 2010; 36: 412-416
      12. Nirmala S and Palanisamy V, Measurement of nuchal translucency thickness in first trimester ultrasound fetal images for detection of chromosomal abnormalities, 2009 International Conference on Control, Automation, Communication and Energy Conservation, 2009, pp. 1–5.

        • Park J
        • Sofka M
        • Lee S
        • Kim D
        • Zhou SK.
        Automatic nuchal translucency measurement from ultrasonography.
        Med Image Comput Comput Assist Interv. 2013; 16: 243-250
        • Sciortino G
        • Tegolo D
        • Valenti C.
        Automatic detection and measurement of nuchal translucency.
        Comput Biol Med. 2017; 82: 12-20
        • Wang S
        • Housden J
        • Noh Y
        • et al.
        Robotic-assisted ultrasound for fetal imaging: evolution from single-arm to dual-arm system.
        Lect Notes Comput Sci. 2019; 11650: 27-38
        • Akolekar R
        • Beta J
        • Picciarelli G
        • Ogilvie C
        • D'Antonio F
        Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis.
        Ultrasound Obstet Gynecol. 2015; 45: 16-26
        • Carbone L
        • Cariati F
        • Sarno L
        • et al.
        Non-invasive prenatal testing: current perspectives and future challenges.
        Genes (Basel). 2020; 12: 15
        • Gil MM
        • Accurti V
        • Santacruz B
        • Plana MN
        • Nicolaides KH.
        Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis.
        Ultrasound Obstet Gynecol. 2017; 50: 302-314
        • Neocleous AC
        • Nicolaides KH
        • Schizas CN.
        First trimester noninvasive prenatal diagnosis: a computational intelligence approach.
        IEEE J Biomed Health Inform. 2016; 20: 1427-1438
        • Catic A
        • Gurbeta L
        • Kurtovic-Kozaric A
        • Mehmedbasic S
        • Badnjevic A.
        Application of Neural Networks for classification of Patau, Edwards, Down, Turner and Klinefelter syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics.
        BMC Med Genomics. 2018; 11: 19
        • Yang J
        • Ding X
        • Zhu W.
        Improving the calling of non-invasive prenatal testing on 13-/18-/21-trisomy by support vector machine discrimination.
        PLoS One. 2018; 13e0207840
        • Troisi J
        • Landolfi A
        • Sarno L
        • et al.
        A metabolomics-based approach for non-invasive screening of fetal central nervous system anomalies.
        Metabolomics. 2018; 14: 77
        • Troisi J
        • Sarno L
        • Martinelli P
        • et al.
        A metabolomics-based approach for non-invasive diagnosis of chromosomal anomalies.
        Metabolomics. 2017; 13: 140https://doi.org/10.1007/s11306-017-1274-z
        • Amorini AM
        • Giorlandino C
        • Longo S
        • et al.
        Metabolic profile of amniotic fluid as a biochemical tool to screen for inborn errors of metabolism and fetal anomalies.
        Mol Cell Biochem. 2012; 359: 205-216
        • Bahado-Singh RO
        • Akolekar R
        • Mandal R
        • et al.
        Metabolomic analysis for first-trimester Down syndrome prediction.
        Am J Obstet Gynecol. 2013; 208 (e1–8): 371
        • Hankins GDV
        • Speer M.
        Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy.
        Obstet Gynecol. 2003; 102: 628-636
        • Chudáček V
        • Spilka J
        • Burša M
        • et al.
        Open access intrapartum CTG database.
        BMC Pregnancy Childbirth. 2014; 14: 16
        • Ugwumadu A.
        Understanding cardiotocographic patterns associated with intrapartum fetal hypoxia and neurologic injury.
        Best Pract Res Clin Obstet Gynaecol. 2013; 27: 509-536
        • Warrick PA
        • Hamilton EF
        • Precup D
        • Kearney RE.
        Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography.
        IEEE Trans Bio Med Eng. 2010; 57: 771-779
        • Fergus P
        • Hussain A
        • Al-Jumeily D
        • Huang DS
        • Bouguila N.
        Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms.
        Biomed Eng Online. 2017; 16: 89
        • Zhao Z
        • Zhang Y
        • Comert Z
        • et al.
        Computer-aided diagnosis system of fetal hypoxia incorporating recurrence plot with convolutional neural network.
        Front Physiol. 2019; 10: 255
        • Balayla J
        • Shrem G.
        Use of artificial intelligence (AI) in the interpretation of intrapartum fetal heart rate (FHR) tracings: a systematic review and meta-analysis.
        Arch Gynecol Obstet. 2019; 300: 7-14
        • Rolnik DL
        • Wright D
        • Poon LCY
        • et al.
        ASPRE trial: performance of screening for preterm pre-eclampsia.
        Ultrasound Obstet Gynecol. 2017; 50: 492-495
        • Von Dadelszen P
        • Payne B
        • Li J
        • et al.
        Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model.
        Lancet. 2011; 377: 219-227
        • Obermeyer Z
        • Emanuel EJ.
        Predicting the future - big data, machine learning, and clinical medicine.
        N Engl J Med. 2016; 375: 1216-1219
        • Darcy AM
        • Louie AK
        • Roberts LW.
        Machine learning and the profession of medicine.
        JAMA. 2016; 315: 551-552
        • Jhee JH
        • Lee S
        • Park Y
        • et al.
        Prediction model development of late-onset preeclampsia using machine learning-based methods.
        PLoS One. 2019; 14e0221202
      13. Neocleous CK, Anastasopoulos P, Nikolaides KH, et al. Neural networks to estimate the risk for preeclampsia occurrence, 2009 International Joint Conference on Neural Networks, 2009, pp. 2221–2225, https://doi.org/10.1109/IJCNN.2009.5178820.

        • Blencowe H
        • Cousens S
        • Oestergaard MZ
        • et al.
        National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications.
        Lancet. 2012; 379: 2162-2172
        • Liu L
        • Oza S
        • Hogan D
        • et al.
        Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis.
        Lancet. 2015; 385: 430-440
        • Wang ML
        • Dorer DJ
        • Fleming MP
        • Catlin EA.
        Clinical outcomes of near-term infants.
        Pediatrics. 2004; 114: 372-376
        • Woythaler MA
        • McCormick MC
        • Smith VC.
        Late preterm infants have worse 24-month neurodevelopmental outcomes than term infants.
        Pediatrics. 2011; 127: e622-e629
        • Mwaniki MK
        • Atieno M
        • Lawn JE
        • Newton CR.
        Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review.
        Lancet. 2012; 379: 445-452
        • Lee KS
        • Ahn KH.
        Artificial neural network analysis of spontaneous preterm labor and birth and its major determinants.
        J Korean Med Sci. 2019; 34: e128
        • Bahado-Singh RO
        • Sonek J
        • McKenna D
        • et al.
        Artificial intelligence and amniotic fluid multiomics: prediction of perinatal outcome in asymptomatic women with short cervix.
        Ultrasound Obstet Gynecol. 2019; 54: 110-118
        • Gortazar L
        • Flores-Le Roux JA
        • Benaiges D
        • et al.
        Trends in prevalence of gestational diabetes and perinatal outcomes in Catalonia, Spain, 2006 to 2015: the Diagestcat Study.
        Diabetes Metab Res Rev. 2019; 35: e3151
      14. Hyperglycemia and adverse pregnancy outcomes: the HAPO Study Cooperative Research Group.
        Obstet Gynecol Surv. 2008; 63: 615-616
        • Polak S
        • Mendyk A.
        Artificial intelligence technology as a tool for initial GDM screening.
        Expert Syst Appl. 2004; 26: 455-460
        • Gauthaman N
        • Walters S
        • Tribe IA
        • Goldsmith L
        • Doumouchtsis SK.
        Shoulder dystocia and associated manoeuvres as risk factors for perineal trauma.
        Int Urogynecol J. 2016; 27: 571-577
        • Tsur A
        • Batsry L
        • Toussia-Cohen S
        • et al.
        Development and validation of a machine-learning model for prediction of shoulder dystocia.
        Ultrasound Obstet Gynecol. 2020; 56: 588-596
        • Cali G
        • Labate F
        • Cucinella G
        • et al.
        Placenta accreta spectrum disorders in twin pregnancies as an under reported clinical entity: a case series and systematic review.
        J Matern Fetal Neonatal Med. 2022; ([Epub ahead of print])
        • Saccone G
        • Della Corte L
        • D'Alessandro P
        • et al.
        Prophylactic use of tranexamic acid after vaginal delivery reduces the risk of primary postpartum hemorrhage.
        J Matern Fetal Neonatal Med. 2020; 33: 3368-3376
        • Della Corte L
        • Saccone G
        • Locci M
        • et al.
        Tranexamic acid for treatment of primary postpartum hemorrhage after vaginal delivery: a systematic review and meta-analysis of randomized controlled trials.
        J Matern Fetal Neonatal Med. 2020; 33: 869-874
        • Carbone L
        • Saccone G
        • Conforti A
        • Maruotti GM
        • Berghella V.
        Cesarean delivery: an evidence-based review of the technique.
        Minerva Obstet Gynecol. 2021; 73: 57-66
        • Morlando M
        • Sarno L
        • Napolitano R
        • et al.
        Placenta accreta: incidence and risk factors in an area with a particularly high rate of cesarean section.
        Acta Obstet Gynecol Scand. 2013; 92: 457-460
        • Elsayes KM
        • Trout AT
        • Friedkin AM
        • et al.
        Imaging of the placenta: a multimodality pictorial review.
        RadioGraphics. 2009; 29: 1371-1391
        • Romeo V
        • Ricciardi C
        • Cuocolo R
        • et al.
        Machine learning analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with placenta previa.
        Magn Reson Imaging. 2019; 64: 71-76
        • Sun H
        • Qu H
        • Chen L
        • et al.
        Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning.
        Eur Radiol. 2019; 29: 6152-6162
        • De Ramón Fernández A
        • Ruiz Fernández D
        • Prieto Sánchez MT
        Prediction of the mode of delivery using artificial intelligence algorithms.
        Comput Methods Programs Biomed. 2022; 219106740
        • Ghi T.
        Sonographic confirmation of fetal position before operative vaginal delivery should be recommended in clinical guidelines.
        Ultrasound Obstet Gynecol. 2021; 57: 36-37
        • Ghi T
        • Conversano F
        • Ramirez Zegarra R
        • et al.
        Novel artificial intelligence approach for automatic differentiation of fetal occiput anterior and non-occiput anterior positions during labor.
        Ultrasound Obstet Gynecol. 2022; 59: 93-99
        • CONSORT-AI and SPIRIT-AI Steering Group
        Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed.
        Nat Med. 2019; 25: 1467-1468